Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

Q is empty.

We have applied [19,8] to switch to innermost. The TRS R 1 is

min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
min(0, y) → 0

The TRS R 2 is

f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The signature Sigma is {f}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
F(s(x), s(y)) → MAX(s(x), s(y))
MIN(s(x), s(y)) → MIN(x, y)
F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
MAX(s(x), s(y)) → MAX(x, y)
F(s(x), s(y)) → MIN(s(x), s(y))
F(s(x), s(y)) → -1(min(s(x), s(y)), max(s(x), s(y)))
F(s(x), s(y)) → *1(s(x), s(y))
+1(s(x), y) → +1(x, y)
*1(x, s(y)) → *1(x, y)
*1(x, s(y)) → +1(x, *(x, y))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
F(s(x), s(y)) → MAX(s(x), s(y))
MIN(s(x), s(y)) → MIN(x, y)
F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))
MAX(s(x), s(y)) → MAX(x, y)
F(s(x), s(y)) → MIN(s(x), s(y))
F(s(x), s(y)) → -1(min(s(x), s(y)), max(s(x), s(y)))
F(s(x), s(y)) → *1(s(x), s(y))
+1(s(x), y) → +1(x, y)
*1(x, s(y)) → *1(x, y)
*1(x, s(y)) → +1(x, *(x, y))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 6 SCCs with 5 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(s(x), y) → +1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAX(s(x), s(y)) → MAX(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

R is empty.
The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MIN(s(x), s(y)) → MIN(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The TRS R consists of the following rules:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
max(0, y) → y
max(x, 0) → x
max(s(x), s(y)) → s(max(x, y))
+(0, y) → y
+(s(x), y) → s(+(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
p(s(x)) → x
f(s(x), s(y)) → f(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))
p(s(x0))
f(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

p(s(x0))
f(s(x0), s(x1))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y)))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y)) → F(-(min(s(x), s(y)), max(s(x), s(y))), *(s(x), s(y))) at position [0,0] we obtained the following new rules:

F(s(x), s(y)) → F(-(s(min(x, y)), max(s(x), s(y))), *(s(x), s(y)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(s(min(x, y)), max(s(x), s(y))), *(s(x), s(y)))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y)) → F(-(s(min(x, y)), max(s(x), s(y))), *(s(x), s(y))) at position [0,1] we obtained the following new rules:

F(s(x), s(y)) → F(-(s(min(x, y)), s(max(x, y))), *(s(x), s(y)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(s(min(x, y)), s(max(x, y))), *(s(x), s(y)))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y)) → F(-(s(min(x, y)), s(max(x, y))), *(s(x), s(y))) at position [0] we obtained the following new rules:

F(s(x), s(y)) → F(-(min(x, y), max(x, y)), *(s(x), s(y)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(min(x, y), max(x, y)), *(s(x), s(y)))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y)) → F(-(min(x, y), max(x, y)), *(s(x), s(y))) at position [1] we obtained the following new rules:

F(s(x), s(y)) → F(-(min(x, y), max(x, y)), +(s(x), *(s(x), y)))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(min(x, y), max(x, y)), +(s(x), *(s(x), y)))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule F(s(x), s(y)) → F(-(min(x, y), max(x, y)), +(s(x), *(s(x), y))) at position [1] we obtained the following new rules:

F(s(x), s(y)) → F(-(min(x, y), max(x, y)), s(+(x, *(s(x), y))))



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

F(s(x), s(y)) → F(-(min(x, y), max(x, y)), s(+(x, *(s(x), y))))

The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


F(s(x), s(y)) → F(-(min(x, y), max(x, y)), s(+(x, *(s(x), y))))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
F(x1, x2)  =  x1
s(x1)  =  s(x1)
-(x1, x2)  =  -(x1)
min(x1, x2)  =  x1
max(x1, x2)  =  x2
+(x1, x2)  =  +
*(x1, x2)  =  *(x1, x2)
0  =  0

Recursive path order with status [2].
Quasi-Precedence:
+ > [s1, *2] > [-1, 0]

Status:
-1: multiset
*2: multiset
s1: multiset
+: multiset
0: multiset


The following usable rules [17] were oriented:

min(0, y) → 0
min(x, 0) → 0
min(s(x), s(y)) → s(min(x, y))
-(s(x), s(y)) → -(x, y)
-(x, 0) → x



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ QDPOrderProof
QDP
                                                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

min(s(x), s(y)) → s(min(x, y))
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
*(x, s(y)) → +(x, *(x, y))
*(x, 0) → 0
+(0, y) → y
+(s(x), y) → s(+(x, y))
max(0, y) → y
max(x, 0) → x
min(0, y) → 0
min(x, 0) → 0

The set Q consists of the following terms:

min(0, x0)
min(x0, 0)
min(s(x0), s(x1))
max(0, x0)
max(x0, 0)
max(s(x0), s(x1))
+(0, x0)
+(s(x0), x1)
-(x0, 0)
-(s(x0), s(x1))
*(x0, 0)
*(x0, s(x1))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.